
04/28/10 1

Tango Training

04/28/10 2

Tango Training

 Introduction (1)
 Device and device server (2)
 Writing device server and client (the basic) (3 – 5)
 Events (6)
 Device server level 2 (7)
 Advanced features (8)
 GUIs (9)
 Archiving system (10)
 Miscellaneous (11)

04/28/10 3

Tango Training:
Part 1 : Introduction

 What isTango?
 Collaboration
 Languages/OS/compilers
 CORBA

04/28/10 4

What is Tango?

A CORBA framework for doing controls
– A toolbox to implement a control system

– A specialization of CORBA adapted to Control

– Hide the complexity of Corba to the programmer

– Adds specific contol system features

CORBA

TANGO

Control System

04/28/10 5

What is Tango?

 A software bus for distributed objects

DevDev Dev DevDevDev

Archiving

TANGO Software Bus

OPC

Dev

TANGO ATK
Java

Qtango
C++

Scan
Service

Java, C++,Python Linux, Windows, Solaris

Linux, Windows, Solaris Labview RT

04/28/10 6

What is Tango?

 Provides a unified interface to all equipments,
hiding how they are connected to a computer
(serial line, USB, sockets….)

 Hide the network
 Location transparency
 Tango is one of the Control System available

today but other exist (EPICS…)

04/28/10 7

The Tango Collaboration

 Tango collaboration history
– Started in 2000 at ESRF

– In 2002, Soleil joins ESRF to develop Tango

– End 2003, Elettra joins the club

– End 2004, Alba also joins

– 2006: Hasilab, GKSS will use Tango for Petra 3
beamlines

– 2009: MAX-lab will use it for Max 4

– 2009: LMJ uses it for target diagnostics

– 2010: FRM II moves from Taco to Tango

04/28/10 8

The Tango Collaboration

 How it works:
– Two collaboration meetings per year

– A mailing list (tango@esrf.fr)

– One Tango coordinator per site

– WEB site to download code, get documentation,
search the mailing list history, read collaboration
meeting minutes…

http://www.tango-controls.org
– Collaborative development using SourceForge

04/28/10 9

Language/OS/compilers

 Tango is now (June 2010) at release 7.1
– The training is based on the features of this release.

 Languages/Commercial tools

C++ Java Python Matlab LabView IgorPro

Client OK OK OK OK OK OK

Server OK OK *** OK

04/28/10 10

Language/OS/Compilers

Linux (32 / 64 bits)
– Redhat E4.0 / E5.0, Ubuntu 9.04 and 9.10 (Suse

at Alba)

– gcc

Solaris
– Solaris 9 + CC

– Solaris 9 + gcc

Windows
– Windows XP / Vista with VC8 / VC9

04/28/10 11

CORBA

 Common Object Request Broker Architecture

– Promoted by OMG

– It’s just paper, not software

 CORBA defines the ORB: a way to call an
object “method” wherever the object is
– In the same process

– In another process

– In a process running somewhere on the network

 CORBA also defines services available for all
objects (event, naming, notification)

04/28/10 12

CORBA

 CORBA allows mixing languages: a client is
not necessarily written in the same language
as server

 CORBA uses an Interface Definition
Language (IDL)

 CORBA defines bindings between IDL and
computing languages (C++, Java, Python,
Ada….)

 It uses IOR (Interoperable Object Reference)
to locate an object

04/28/10 13

CORBA
 IDL for a remote controlled car

interface remote_car
{

void go_forward(void);
void go_backward(void);
void stop(void);
void turn(float angle);

};

CORBA

IDL file

IDL to C++
compiler

IDL to Java
compiler

C++ compiler Java compiler

Main with
Object proxy
Creation
 +
User code

Main with
Object creation
 +
Object
implementation

Client Server

GIOP - IIOP

IOR

04/28/10 15

CORBA

 Many CORBA ORB and services available
 Tango uses

– omniORB for C++ ORB
(http://omniorb.sourceforge.net)

– JacORB for Java ORB (http://www.jacorb.org)

– omniNotify for CORBA notification service (
http://omninotify.sourceforge.net)

– Boost python for PyTango (1.41)

http://omninotify.sourceforge.net/

04/28/10 16

Tango Training:
Part 2 : Device and

Device Server

 The Tango device
 The Tango device server
 A minimum Tango

System

04/28/10 17

The Tango Device

 The fundamental brick of Tango is the device!
 Everything which needs to be controlled is a

“device” from a very simple equipment to a
very sophisticated one

 Every device has a three field name
“domain/family/member”
– sr/v-ip/c18-1, sr/v-ip/c18-2

– sr/d-ct/1

– id10/motor/10

04/28/10 18

Some device(s)

One device

One deviceOne device

04/28/10 19

A sophisticated device (RF cavity)

another
device

04/28/10 20

The Tango Class

 Every device belongs to a Tango class (not a
computing language class)

 Every device inherits from the same root
class (DeviceImpl class)

 A Tango class implements the necessary
features to control one kind of equipment
– Example : The Agilent 4395a spectrum analyzer

controlled by its GPIB interface

04/28/10 21

The Tango Device Server

 A Tango device server is the process where
the Tango class(es) are running.

Tango device class A

Device
sr/v-ip/1

Device
sr/v-ip/2

Tango device class B

 Device
id4/mot/1

 Device
id4/mot/3

 Device
id4/mot/2

A Tango device server

“ps” command shows one device server

04/28/10 22

The Tango Device Server

 Tango uses a database to configure a device
server process

 Device number and names for a Tango class
are defined within the database not in the
code.

 Which Tango class(es) are part of a device
server process is defined in the database but
also in the code (training part 6)

04/28/10 23

The Tango Device Server

 Each device server is defined by the couple
“executable name / instance name”

One vacuum pump

VP-DSVP-DS

Crate
X

VP-DSVP-DS

Crate
X+1

sr/v-ip/c9-1 to
sr/v-ip/c9-5

sr/v-ip/c10-1 to
sr/v-ip/c10-5

sr/v-ip/c11-1 to
sr/v-ip/c11-5

sr/v-ip/c8-1 to sr/v-ip/c8-5

How is it possible to define that device
sr/v-ip/c9-3 belongs to the second VP-DS
running on Crate X ?
Start each device server with an
INSTANCE NAME

04/28/10 24

The Tango Device Server

 During its startup sequence, a Tango device
server asks the database which devices it has
to create and to manage (number and
names)

 Device servers are started like
VP-DS c8
VP-DS c10

DS exec name Inst name Class name Device name

VP-DS c8 RibberPump sr/v-ip/c8-1

VP-DS c8 RibberPump sr/v-ip/c8-2

VP-DS c8 RibberPump sr/v-ip/c8-3

04/28/10 25

A minimum Tango System

 To run a Tango control system, you need
– A running MySQL database
– The Tango database server

• It is a C++ Tango device server with one device

 To start the database server on a fixed port
 The environment variable TANGO_HOST is

used by client/server to know
– On which host the database server is running
– On which port it is listening

04/28/10 26

A minimum Tango System

DataBaseds 2 –ORBendPoint giop:tcp:host:10000

TANGO_HOST=host:port (Ex : TANGO_HOST=orion:10000)

Database
 server

Tango
 client

Device
 server

Send device(s) IORGet device(s) IOR

CORBA requests

Execute cmd/read-write attribute

04/28/10 27

Tango Training:
Part 3 : Writing a

device server

 Tango device
command/attributes

 Coding a Tango
class

 Errors
 Properties

04/28/10 28

Tango Device

 Each Tango device is a CORBA object
 Each Tango device supports the same

network interface
 What do we have in this interface ?

04/28/10 29

Command/Attribute

 On the network a Tango device mainly has
– Command(s): Used to implement “action” on a

device (switching ON a power supply)

– Attribute(s): Used for physical values (a motor
position)

 Clients ask Tango devices to execute a
command or read/write one of its attributes

 A Tango device also has a state and a status
which are available using command(s) or as
attribute(s)

04/28/10 30

Tango Device Command

 A command may have one input and one
output argument.

 A limited set of argument data types are
supported
– Boolean, short, long, long64, float, double, string,

unsigned short, unsigned long, unsigned long64,
array of these, 2 exotic types and State data type

04/28/10 31

Tango Device Attribute

 Self describing data via a configuration
 Thirteen data types supported:

– Boolean, unsigned char, short, unsigned short, long, long64,
unsigned long, unsigned long64, float, double, string, state
and DevEncoded data type

 Three accessibility types
– Read, write, read-write

 Three data formats
– Scalar (one value), spectrum (an array of one dimension),

image (an array of 2 dimensions)

 Tango adds 2 attributes which are state and status

04/28/10 32

Tango Device Attribute

 When you read an attribute you receive:
– The attribute data (luckily…)
– An attribute quality factor

• ATTR_VALID, ATTR_INVALID, ATTR_CHANGING,
ATTR_ALARM, ATTR_WARNING

– The date when the attribute was read (number of seconds
and usec since EPOCH)

– Its name

– Its dimension, data type and data format

 When you write an attribute, you send
– The new attribute data

– The attribute name

04/28/10 33

Device Attribute Configuration

 Attribute configuration defined by its
properties
– Five type of properties

• Hard-coded

• Modifiable properties

– GUI parameters

– Max parameters

– Alarm parameters

– Event parameters

 A separate network call allows clients to get
attribute configuration (get_attribute_config)

04/28/10 34

Device Attribute Configuration

 The hard coded attribute properties (8)
– name

– data_type

– data_format

– writable

– max_dim_x

– max_dim_y

– display level

– (writable_attr_name)

04/28/10 35

Device Attribute Configuration

 The GUI attribute properties (6)
– Description
– Label
– Unit
– Standard_unit
– Display_unit
– Format (C++ or printf)

 The Maximum attribute properties (used only
for writable attribute) (2)
– min_value
– max_value

04/28/10 36

Device Attribute Configuration

 The alarm attribute properties (6)
– min_alarm, max_alarm
– min_warning, max_warning
– delta_t, delta_val

 The event attribute properties (6)
– period (for periodic event)
– rel_change, abs_change (for change event)
– period, rel_change, abs_change (for archive

event)

04/28/10 37

Tango Device State

 A limited set of 14 device states is available.
– ON, OFF, CLOSE, OPEN, INSERT, EXTRACT,

MOVING, STANDBY, FAULT, INIT, RUNNING,
ALARM, DISABLE and UNKNOWN

 All defined within an enumeration.

04/28/10 38

Writing a Tango Device Class

 Writing Tango device class need some glue code. We
are using a code generator with a GUI called POGO :
Program Obviously used to Generate Objects

 Following some simple rules, it’s possible to use it
during all the device class development cycle (not
only for the first generation)

 POGO generates
– C++, Python and Java Tango device class glue code

– Makefile (C++)

– Basic Tango device class documentation (HTML)

04/28/10 39

A Tango Device Class (example)

 A ski lift class
– 3 states

• ON, OFF, FAULT (OFF at startup)

– 3 commands

– 3 attributes

Name In Out Allowed

Reset Void Void If FAULT

On Void Void If OFF

Off Void Void Always

Name type format Writable

Speed double scalar Read/Write

Wind_speed double scalar Read

Seats_pos long spectrum Read

04/28/10 40

Exercise 1
 Generate a MaxLabPowerSupply class with Pogo

– 3 states:
• ON, OFF, FAULT, ALARM
• OFF at startup

– 4 commands:
– On to switch device ON

– allowed when state is OFF
– Off to switch device OFF

– allowed only when state is ON or ALARM
– Reset to reset the device in case of a FAULT

– allowed only when state is FAULT
– SendCmd to send low-level command. Expert only. Input arg =

DEV_STRING, output arg = DEVVAR_LONGSTRINGARRAY
– Allowed only when OFF

– 3 attributes:
• Current: read/write – scalar – double - memorized
• Voltage: read/write – scalar - double
• CurrentSetPoint: read – scalar – double

 Generate the documentation

04/28/10 41

Python Binding

 Based on the C++ API and boost for the C++
to Python link (http://www.boost.org/)

Python

Boost library

Tango python binding library

Tango C++ libraries

Network

libboost_python.so

_PyTango.so

libtango.so and liblog4tango.so

http://www.boost.org/

04/28/10 42

Python Binding

 Module name = PyTango and its actual
release is 7.1.1 (PyTango.Release.version)

 To use it, you need to have:
• In your LD_LIBRARY_PATH

•The boost release 1.41 (or more) library
•The Tango and ORB libraries

• In your PYTHONPATH
•The PyTango python package

04/28/10 43

Coding a Tango Device Class

 Four things to code
– Device creation

– Implementing commands

– Reading attributes

– Writing attributes

04/28/10 44

Coding a Tango Class

 For the SkiLift class, Pogo has created 2 files
– SkiLift.py

– TangoClassID.txt

 Only SkiLift.py has to be modified

04/28/10 45

Coding a Tango Class
 Which methods can I use within a Tango class?

– SkiLift class inherits from a Tango class called
Device_<x>Impl

• All the methods from Device_<x>Impl class which are wrapped
to Python

– Some methods received a Attribute or WAttribute object
• All the methods of these two classes wrapped to Python

 Doc available at http://www.tango-controls.org

– Documents/Tango Kernel/PyTango for Python
classes

– Documents/Tango Kernel/Tango device server
classes for Cpp classes

04/28/10 46

Creating the Device (constructor)

 A init_device() method to construct the device
– SkiLift.init_device()

 A delete_device() to destroy the device
– SkiLift.delete_device()

 All resources acquired in init_device() must
be returned in delete_device()

04/28/10 47

Creating the Device (constructor)
 The init_device() method

– Init state and status

– Init (create) local data

#---

Device initialization
#---

 def init_device(self):
 print "In ", self.get_name(),
"::init_device()"
 self.set_state(PyTango.DevState.OFF)

self.get_device_properties(self.get_device_c
lass())

 self.set_status('The skilift is OFF')

04/28/10 48

Creating the Device

 The delete_device() method
– Delete memory/resources allocated in init_device

#--
Device destructor
#--
 def delete_device(self):
 print "[Device delete_device method] for device",self.get_name()

04/28/10 49

Implementing a Command

 One method always_executed_hook() for all
commands
– SkiLift.always_executed_hook()

 If state management is needed, one
is_xxx_allowed() method
– bool SkiLift.is_reset_allowed()

 One method per command
– SkiLift.reset()

50

SkiLift
(CORBA Obj.)

SkiLiftClass
(Device Class)

SkiLift
(Device
Impl.)

always_executed_hook

ResetClass
(Command)

is_allowed

command_inout
CORBA::Any command_handler

CORBA::Any

execute
CORBA::Any reset

Void

VoidCORBA::Any
CORBA::Any

CORBA::Any

Implementing a Command

 Reset command sequencing

is_Reset_allowed

04/28/10 51

Implementing a Command

 SkiLift.is_Reset_allowed method coding

#---- Reset command State Machine -----------------
 def is_Reset_allowed(self):
 if self.get_state() in [PyTango.DevState.ON,

 PyTango.DevState.OFF]:
End of Generated Code
Re-Start of Generated Code

 return False
 return True

04/28/10 52

Implementing a Command

 SkiLift.reset command coding
#--
Reset command:
#
Description: Reset the ski lift device

#--
 def Reset(self):
 print "In ", self.get_name(), "::Reset()"
 # Add your own code here
hardware.reset()

 self.set_state(PyTango.DevState.OFF)
 self.set_state('The ski lift is OFF')

04/28/10 53

Implementing a Command

Name Input (with self) return mandatory

init_device None None Yes

delete_device None None No

always_executed_hook None None No

 General methods

 Cmd methods

Name Input (with self) return mandatory

is_<Cmd>_allowed None bool No

<Cmd_name> Depends on cmd
arg type

Depends on
cmd arg type

Yes

04/28/10 54

Command data type (PyTango)

Tango data type Python type

DEV_VOID No data

DEV_BOOLEAN bool

DEV_SHORT int

DEV_LONG int

DEV_LONG64 long or int (32/64 bits computer)

DEV_FLOAT float

DEV_DOUBLE float

DEV_USHORT int

DEV_ULONG int

DEV_ULONG64 long or int (32/64 bits computer)

DEV_STRING str

04/28/10 55

Command data type (PyTango)
Tango data type Python type

DEVVAR_CHARARRAY sequence<int> or numpy array (numpy.uint8)

DEVVAR_SHORTARRAY sequence<int>or numpy array (numpy.int16)

DEVVAR_LONGARRAY sequence<int>or numpy array (numpy.int32)

DEVVAR_LONG64ARRAY sequence<int>or sequence<long> or numpy array
(numpy.int64)

DEVVAR_FLOATARRAY sequence<float>or numpy array (numpy.float32)

DEVVAR_DOUBLEARRAY sequence<float>or numpy array (numpy.float64)

DEVVAR_USHORTARRAY sequence<int>or numpy array (numpy.uint16)

DEVVAR_ULONGARRAY sequence<int>or numpy array (numpy.uint32)

DEVVAR_ULONG64ARRAY sequence<int>or sequence<long> or numpy array
(numpy.uint64)

DEVVAR_STRINGARRAY sequence<str>

DEVVAR_LONGSTRINGARARAY sequence with ((sequence<int> or numpy array
(numpy.int32)) + sequence<str>)

DEVVAR_DOUBLESTRINGARRAY Sequence with ((sequence<float> or numpy array
(numpy.float32)) + sequence<str>)

04/28/10 56

Exercise 2

 Code the 4 commands of the MaxLabPS:
• Cmd On. The PS automatically switches to FAULT

after 10 seconds

• Cmd Off

• Cmd Reset
• Cmd SendCmd

•Print the received command string
•Return 3 numbers and 2 strings

04/28/10 57

Back to the init_device method

#--
Device initialization
#--

def init_device(self):
print "In ", self.get_name(), "::init_device()"
self.set_state(PyTango.DevState.OFF)
self.get_device_properties(self.get_device_class())

self.set_status('The ski lift is OFF')
self.hardware_readings = []

04/28/10 58

Reading Attribute(s)

 One method to read hardware
– SkiLift.read_attr_hardware(data)

 If state management is needed, one
is_xxx_allowed() method
– bool SkiLift.is_Speed_allowed(req_type)

 One method per attribute
– SkiLift.read_Speed(Attribute)

04/28/10 59

Reading Attribute(s)

 Reading attribute(s) sequence

read_attributes(Speed)

SkiLift
(CORBA Obj.)

SkiLift
(Device
Impl.)

always_executed_hook

read_attr_hardware (Attr1, Attr2)

is_Speed_allowed (Attr1)

read_Speed (Attr)

04/28/10 60

Reading Attribute(s)

 Most of the attribute Tango feature are implemented
in a Tango kernel class called “Attribute”. The user
only manage attribute data

 Reading sequence
– read_attr_hardware

• 1 call even if several attributes must be read

• Rule: Reading the hardware only once

• Update internal variable

– is_<attribute>_allowed
• 1 call per attribute
• Rule: Enable/disable attribute reading

04/28/10 61

Reading Attribute(s)

 Reading sequence
– read_<attribute>

• 1 call per attribute to read
• Rule: Affect a value to the attribute

• Associate the attribute and a variable which represents it
with :

– attr.set_value(data,…)

04/28/10 62

Reading Attribute(s)

 read_attr_hardware() method

#--
Read Attribute Hardware
#---

def read_attr_hardware(self,data):
print "In ", self.get_name(), "::read_attr_hardware()"

self.hardware_readings = hardware.read()

04/28/10 63

Reading Attribute(s)

 read_Speed() method

#--
Read Speed attribute
#--

def read_Speed(self, attr):
print "In ", self.get_name(), "::read_Speed()"

Add your own code here
attr.set_value(self.hardware_readings[0])

04/28/10 64

Writing Attribute(s)

 If state management is needed, one
is_xxx_allowed() method
– bool SkiLift.is_Speed_allowed(req_type)

 One method per attribute
– SkiLift.write_Speed(Wattribute)

04/28/10 65

 Writing attribute(s) sequence

write_attribute(Speed)

SkiLift
(CORBA Obj.)

SkiLift
(Device
Impl.)

always_executed_hook

is_Speed_allowed (Attr)

write_Speed (Attr)

Writing Attribute(s)

04/28/10 66

Writing Attribute(s)

 Writing sequence
– is_<attribute>_allowed

• 1 call per attribute
• Rule: Enable/disable attribute writing

– write_<attribute>
• 1 call per attribute to write

• Rule: Get the value to be written and set the hardware

• Get the value to be written with :
– attr.get_write_value()

04/28/10 67

Writing Attribute(s)

 write_Speed() method

def write_Speed(self, attr):
print "In ", self.get_name(), "::write_Speed()"

data=[]
attr.get_write_value(data)

data = attr.get_write_value()
hardware.write_speed(data)

04/28/10 68

Implementing attribute

Name Input (with self) return mandatory

always_executed_hook None None No

Read_attr_hardware List<int> None No

 General methods

 Attribute methods

Name Input (with self) return mandatory

is_<Attr>_allowed req_type (int) bool No

write_<Attr> WAttribute None Yes

read_<Attr> Attribute None Yes

04/28/10 69

Scalar Attribute data type (PyTango)

Tango data type Python type

DEV_BOOLEAN bool

DEV_UCHAR int

DEV_SHORT int

DEV_LONG int

DEV_LONG64 long or int (32/64 bits computer)

DEV_FLOAT float

DEV_DOUBLE float

DEV_USHORT int

DEV_ULONG int

DEV_ULONG64 long or int (32/64 bits computer)

DEV_STRING str

04/28/10 70

Spectrum/Image data type (PyTango)

Tango data type Python type

DEV_BOOLEAN sequence<bool> or numpy.ndarray (numpy.xxx)

DEV_UCHAR sequence<int> or numpy.ndarray (numpy.uint8)

DEV_SHORT sequence<int> or numpy.ndarray (numpy.int16)

DEV_LONG sequence<int> or numpy.ndarray (numpy.int32)

DEV_LONG64 sequence<long or int> or numpy.ndarray (numpy.int64)

DEV_FLOAT sequence<float> or numpy.ndarray (numpy.float32)

DEV_DOUBLE sequence<float> or numpy.ndarray (numpy.float64)

DEV_USHORT sequence<int> or numpy.ndarray (numpy.uint16)

DEV_ULONG sequence<int> or numpy.ndarray (numpy.uint32)

DEV_ULONG64 sequence<long or int> or numpy.ndarray (numpy.uint64)

DEV_STRING sequence<str>

04/28/10 71

Memorised Attributes

 Only for writable scalar attributes!
 For every modification the attribute set point

is saved in the database
 Memorized attributes initialization options

(supported by Pogo)
– Write hardware at init.

04/28/10 72

Exercise 3 (Arg !!…)

Add attributes to the MaxLabPowerSupply class
– Voltage (Double – Scalar – R/W): What you read

is what has been written (if state is ON or ALARM,
otherwise 0). 0 at init

– Current (Double – Scalar – R/W - Mem): What
you read is what has been written + random
between 0 and 1 (if state is ON or ALARM,
otherwise 0). Take 100 mS.

– CurrentSetPoint (Double – Scalar - R): The
Current attribute set point

04/28/10 73

Reporting Errors

 Using exception
– The Tango exception DevFailed is an error stack

– Each element in the stack has 4 members :
• reason (string)

– The exception summary

• desc (string)

– The full error description

• origin (string)

– The method throwing the exception

• Severity (string) (not used)

– Set to WARN, ERR, PANIC

04/28/10 74

Reporting Errors

 Static methods to help throwing an exception
 Another method to re-throw an exception and

to add one element in the error stack (Often
used in a “except” block)

PyTango.Except.throw_exception('SkiLift_NoCable',
 'Oups, the cable has fallen down !!',
 'SkiLift.init_device()')

PyTango.Except.re_throw_exception(previous_exception,
 reason, desc, origin)

PyTango.Except.print_exception(except)

04/28/10 75

Properties

 Properties are stored within the MySQL
database

 No file – Use Jive to create/update/delete
properties

 You can define properties at
– Object level

– Class level

– Device level

– Attribute level

04/28/10 76

Properties

 Property data type
– Simple type

• bool, short, long, float, double, unsigned short, unsigned
long, string

– Array type
• short, long, float, double, string

 Pogo generates code to retrieve properties
from the database and store them in your
device
– Method MyDev.get_device_property()

04/28/10 77

Properties

 Algorithm generated by Pogo to simulate
default property values

- /IF/ class property has a default value
 - property = class property default value
- /ENDIF/
- /IF/ class property is defined in db
 - property = class property as found in db
- /ENDIF/
- /IF/ device property has a default value
 - property = device property default value
- /ENDIF/
- /IF/ device property is defined in db
 - property = device property as found in db
- /ENDIF/

04/28/10 78

Properties

 PyTango creates a class python attribute for
each device property

 if self.MyProp is True:
 Do What You Want

04/28/10 79

Attribute Properties

 Several ways to define them with a priority
schema (from lowest to highest priority) :
– There is a default value hard-coded within the

library

– You can define them at class level

– You can define them by code (POGO) at class
level

– If you update them, the new value is taken into
account by the device server and written into the
database. Device level.

04/28/10 80

Exercise 4

 The SendCmd command returns exception if
input arg != “calibrate”

 The time before the PS switches to Fault is a
device property TimeToFault (default value
10)

 The Voltage attribute value at startup is a
device property DefaultVoltage (default value
123)

04/28/10 81

Some code executed only once ?

 Yes, it is foreseen
 Each Tango class has a MyDevClass class

(SkiLiftClass) with only one instance.
 Put code to be executed only once in its

constructor
 Put data common to all devices in its data

members
 The instance of MyDevClass is constructed

before any devices

82

A Tango Device Server Process
 The main part

#==
#
SkiLift class main method
#
#==
if __name__ == '__main__':

try:
py = PyTango.Util(sys.argv)
py.add_TgClass(SkiLiftClass,SkiLift,'SkiLift')

U = PyTango.Util.instance()
U.server_init()
U.server_run()

except PyTango.DevFailed,e:
print '-------> Received a DevFailed exception:',e

except Exception,e:
print '-------> An unforeseen exception occured....',e

04/28/10 83

Automatically added
Commands/Attributes

 Three commands are automatically added
– State : In = void Out = DevState

• Return the device state and check for alarms

• Overwritable

– Status : In = void Out = DevString
• Return the device status

• Overwritable

– Init : In = void Out = void
• Re-initialise the device (delete_device + init_device)

 Two attributes are automatically added
– State and Status

04/28/10 84

The remaining Network Calls

 ping
– Just ping a device. Is it available on the network?

 command_list_query
– Returns the list of device supported commands

with their descriptions

 command_query
– Return the command description for one specific

command

 info
– Return general info on a device (class, server

host….)

04/28/10 85

The remaining Network Calls

 get_attribute_config
– Return the attribute configuration for x (or all)

attributes

 set_attribute_config
– Set attribute configuration for x attributes

 blackbox
– Return x entries of the device black box
– Each device has a black box (round robin buffer)

where each network call is registered with its date
and the calling host

04/28/10 86

The remaining Network Calls

 write_read_attribute
– Write then read one attribute in one go

04/28/10 87

The remaining Network Calls

 For completeness
– Five CORBA attributes

• state
• status

• name

• description
• adm_name

04/28/10 88

Tango Training:
Part 4 :

The Client Side

 The PyTango client
API

 Error management
 Asynchronous call
 Group call

04/28/10 89

Tango on the Client Side

 A C++, Python and Java API is provided to
simplify developer's life
– Easy connection building between clients and

devices

– Manage re-connection

– Hide some IDL call details

– Hide some memory management issues

 These API’s are a set of classes

04/28/10 90

PyTango Client

 On the client side, each Tango device is an
instance of a DeviceProxy class

 DeviceProxy class
– Hide connection details

– Hide which IDL release is supported by the device

– Manage re-connection

 The DeviceProxy instance is created from the
device name

PyTango.DeviceProxy dev(“id13/v-pen/12”);

04/28/10 91

PyTango Client

 The DeviceProxy command_inout() method
sends a command to a device

 The class DeviceData is used for the data
sent/received to/from the command.

dev = PyTango.DeviceProxy(“et/s_lift/1”)

dev.command_inout(‘On’)
dev.on()

print dev.command_inout(‘EchoShort’,10)

print dev.EchoShort(10)

DeviceProxy.command_inout(name, cmd_param)

04/28/10 92

PyTango Client

 The DeviceProxy read_attribute() method
reads a device attribute (or read_attributes())

 The class DeviceAttribute is used for the data
received from the attribute.

DeviceAttribute DeviceProxy.read_attribute(name);

dev = PyTango.DeviceProxy(‘et/s_lift/1’)
da = dev.read_attribute(‘SpecAttr’)
print da.value

print dev[‘SpecAttr’].value

seq_da = dev.read_attributes([‘SpecAttr’,’ImaAttr’])

04/28/10 93

PyTango Client

 The DeviceProxy write_attribute() method
writes a device attribute (or write_attributes())

DeviceProxy.write_attribute(name,value)

dev = PyTango.DeviceProxy(‘et/s_lift/1)
dev.write_attribute(‘SpecAttr’,[2,3])

dev.write_attribute(‘SpecAttr’,numpy.array([6,7]))

dev[‘SpecAttr’] = [3,4]

dev.write_attributes(([‘Speed’,5],[‘SpecAttr’,[2,3]]))

04/28/10 94

PyTango Client

 The API manages re-connection
– By default, no exception is thrown to the caller

when the automatic re-connection takes place

– Use the
DeviceProxy.set_transparency_reconnection()
method if you want to receive an the exception

 Don’t forget to catch the PyTango.DevFailed
exception!

04/28/10 95

PyTango Client

 Many methods available in the DeviceProxy
class
– ping, info, state, status, set_timeout_millis,

get_timeout_millis, attribute_query,
get_attribute_config, set_attribute_config…..

 If you are interested only in attributes, use the
AttributeProxy class

 Look at PyTango doc (Pink site)

04/28/10 96

Errors on the Client Side

 All the exception thrown by the API are
PyTango.DevFailed exception

 One catch (except) block is enough
 Ten exception classes (inheriting from

DevFailed) have been created
– Allow easier error treatment

 These classes do not add any new
information compared to the DevFailed
exception

04/28/10 97

Errors on the Client Side

 Exception classes :
– ConnectionFailed, CommunicationFailed,

WrongNameSyntax, NonDbDevice, WrongData,
NonSupportedFeature, AsynCall,
AsynReplyNotArrived, EventSystemFailed,
NamedDevFailedList

 Documentation tells you (or should) which
kind of exception could be thrown.

04/28/10 98

Errors on the Client Side

 A small example

try:
 att = PyTango.AttributeProxy(‘et/s_lift/1Pres’)
 print att.read()
except PyTango.WrongNameSyntax:

print ‘Et couillon, faut 3 / !’
except PyTango.DevFailed,e:

PyTango.Except.print_exception(e)

04/28/10 99

Exercise 5

 Write a MultiMaxLabPowerSupply Tango
class
 5 states (ON, OFF, FAULT, ALARM, UNKNOWN)
 2 commands (On, Off)
 1 attribute (Currents: Spectrum – DEV_DOUBLE –

R/W)
 1 Device property (ChannelsName: string array –

default = “Not defined”)

 This Tango class is a client of the individual
power supply device (channel)

04/28/10

Exercise 5
 Refuse to start if no channel name defined
 State management:

 If one channel in FAULT -> FAULT
 Idem for OFF and ALARM, otherwise ON
 UNKNOWN in case of exception

 On Allowed only when OFF/ON
 Switches ON all channels

 Off Allowed only when ON/OFF/ALARM
 Switches OFF all channels

 Currents attribute
 Return individual channels value (as a Numpy array)
 Write individual channels. Exception if wrong inputs number

 Create 3 MaxLabPowerSupply devices and connect them to a
single MultiMaxLabPowerSupply device.

04/28/10 101

Asynchronous Call

 Asynchronous call :
– The client sends a request to a device and does

not block waiting for the answer.
– The device informs the client process that the

request has ended

 Does not request any changes on the server
side

 Supported for
– command_inout
– read_attribute(s)
– write_attribute(s)

04/28/10 102

Asynchronous call

 Tango supports two models for clients to get
requested answers
– The polling model

• The client decides when it checks for requested answers
– With a non blocking call
– With a blocking call

– The callback model
• The request reply triggers a callback method

– When the client requested it with a synchronization
method (Pull model)

– As soon as the reply arrives in a dedicated thread
(Push model)

04/28/10 103

Group Call

 Provides a single point of control for a Group
of devices

 Group calls are executed asynchronously!
 You create a group of device(s) with the

PyTango.Group class
– It’s a hierarchical object (You can have a group in

a group) with a forward or not forward feature

 You execute a command (or R/W attribute) on
the group

04/28/10 104

Group Call

 Using groups, you can
– Execute one command

• Without argument
• With the same input argument to all group members

• With different input arguments for group members

– Read one attribute

– Write one attribute
• With same input value for all group members

• With different input value for group members

• Read several attributes

04/28/10 105

Group Call

 Three classes to get group action result
PyTango.GroupCmdReplyList

For command executed on a group

PyTango.GroupAttrReplyList
For attribute(s) read on a group

PyTango.GroupReplyList
For attribute written on a group

04/28/10 106

Tango Training:
Part 5 : More info
on Device Servers

 The Administration
Device

 The Logging
System

 The Polling

04/28/10 107

The Administration Device

 Every device server has an administration device
 Device name

– dserver/<exec name>/<instance name>

 This device supports 27 (30) commands and 0 (2)
attributes
– 8 miscellaneous commands
– 7 commands for the logging system

– 1 command for the event system

– 7 commands for the polling system
– 4 commands to lock/unlock device

04/28/10

The administration device

 Miscallaneous commands
 DevRestart destroy and re-create a device. The

client has to re-connect to the device
 RestartServer to restart a complete device server
 QueryClass to get the list of Tango classes

embedded within the process
 QueryDevice to get the list of available devices
 Kill to kill the process
 State, Status, Init

04/28/10 109

The Tango Logging System

 Send device server messages to a target
– A file

– The console

– A centralized application called LogViewer

Device
server

Console

File(s)
LogViewer

Tango device

04/28/10 110

The Tango Logging System

 Each Tango device has a logging level
 Each logging request also has a logging level
 Six ordered logging levels are defined

– DEBUG < INFO < WARN < ERROR < FATAL <
OFF

 Each logging request with a level lower than
the device logging level is ignored

 Device default logging level is WARN

04/28/10 111

The Tango Logging System

 Five functions to send logging messages
– print like

• self.{fatal, error, warn, info, debug}_stream()

 Usage :

self.debug_stream(“Hola amigo, que tal ?”)

self.debug_stream(‘In read_Speed method for device’,self.get_name())

04/28/10 112

The Tango Logging System

 Logging on a console
– Send messages to the console on which the device server

has been started

 Logging in a file
– Logging message stored in a XML file

– Manage 2 files

– Swap files when file size is greater than a pre-defined value
(a property). Rename the old one as “xxx_1”. Default file
size threshold is 2 MBytes

– Default file names: “/tmp/tango/process/instance/device.log”
or “C:\tango\…..” (create directory by hand…)

– Read files with the “LogViewer” application

04/28/10 113

The Tango Logging System

 Logging with the LogViewer
– Send messages to a Tango device embedded in

the LogViewer application

 LogViewer (Java appl.)
– Graphical application to display, filter and sort

logging messages

– Two modes
• Static: Memorize a list of Tango devices for which it will

get/display messages

• Dynamic: The user (with a GUI) chooses devices for
which messages must be displayed

04/28/10 114

The Tango Logging System

 Seven administration device commands
dedicated to logging
– AddLoggingTarget

– RemoveLoggingTarget

– GetLoggingTarget

– GetLoggingLevel

– SetLoggingLevel

– StopLogging

– StartLogging

04/28/10 115

The Tango Logging System

 Logging configuration with Jive
– current_logging_level

• Not memorized

– logging_level
• Memorized in db

– current_Logging_target
• Not memorized

• console::cout, file::/tmp/toto or device::tmp/log/xxx

– logging_target
• Memorized in db

04/28/10 116

The Tango Logging System

 Each device server has a “-v” option
– v1 and v2

• Level = INFO and target = console::cout for all DS
devices

– v3 and v4
• Level = DEBUG and target = console::cout for all DS

devices

– v5
• Like v4 plus library messages (there are many) on target

= console::cout

– Without level is a synonym for –v4

04/28/10 117

The Polling

 Each Tango device server has a polling
thread pool

 It’s possible to poll attributes and/or
commands (without input parameters)

 The polling result is stored in a polling buffer
(round robin buffer)

 Each device has its own polling buffer
 Polling buffer depth is tunable

– By device (default is 10)
– By command/attribute

04/28/10 118

The Polling

 By default, there is only one polling thread in
the pool

 You assign polled device to a thread
 Two admin device properties to manage

polling thread pool
polling_thread_pool_size
polling_thread_pool_conf

 The Tango admin tool (astor) has a graphical
panel to tune device server polling

04/28/10 119

The Polling

04/28/10 120

The Polling

 A client is able to read data from
– The real device

– The last record in the polling buffer
– The polling buffer and in case of error from the real device

– The choice is done with the DeviceProxy.set_source()
method

 A network call to read the complete polling buffer is
also provided (command_inout_history or
read_attribute_history defined in the Tango IDL)
– Not wrapped to Python…

04/28/10 121

The Polling

 Seven administration device commands allow
the polling configuration
– AddObjPolling

– RemObjPolling

– UpdObjPolling

– StartPolling

– StopPolling

– PolledDevice

– DevPollStatus

04/28/10 122

The Polling

 How it starts ?
– At device startup

– For completeness
– Externally triggering mode (C++ DS only)

– External polling buffer filling (C++ DS only)
• Get data with the command_inout_history or

read_attribute_history calls

04/28/10 123

The Polling

 The polling has to be tuned
Do not try to poll a command with a polling period

of 200 mS if the command needs 250 mS !!!
 If a polling thread is late (for one reason or

another), it discards polling
Leave your device available for around 50 % for

external world requests
For a command needing 250 mS, minimum polling

period around 500 mS

04/28/10 124

Exercise 6

 Poll the Current attribute of one
MaxLabPowerSupply device
 Play with the source parameter

 Add some Tango logging messages in the
MaxLabPowerSupply Tango class
 Start device server process using –vx option
 Start the LogViewer appli

04/28/10 125

Tango Training:
Part 6 :
Events

04/28/10 126

Events

 Another way to write applications
– Applications do not poll any more

– The device server informs the applications that
“something” has happened

 Polling done by the device server polling
thread(s)

 Uses a CORBA service called “Notification
Service”

 Tango uses omniNotify as Notification Service

04/28/10 127

Events

 One Notification service daemon (notifd)
running on each host

 Event propagation
– The event is sent to the notification service

– When detected by the polling thread(s)

– On request (push_event() call family)

– The notification service sends the event to all the
registered client(s)

 It is possible to ask the notification service to
filter events

04/28/10 128

Events
 Dev
Server

 Dev
Server

Event table in the
Tango database

Name IOR
Event
Channel
 factory

Notification service (simplified)

Event channel Event channel

Filter
factory

Filter 1 Filter 3

Client 1
 per

Client 2
 per

 Client 3
per/change

Client 4
 change

Client 5
change

Filter 4Filter 2
per change

04/28/10 129

Events
 Only available on attributes!
 Does not requires any changes in the device

server code
 Based on callbacks. The client callback is

executed when an event is received
• Event data or an error stack in case of an

exception

 6 types of events
• Periodic, Change, Archive
• Attribute configuration change, Data ready
• User defined

04/28/10 130

Events

 Periodic event
– Event pushed:

• At event subscription
• On a periodic basis

 Change event
– Event pushed when

• a change is detected in attribute data
• a change is detected in attribute size (spectrum/image)
• At event subscription
• An exception was received by the polling thread
• the attribute quality factor changes
• When the exception disappears

04/28/10 131

Events

 Archive event
– A mix of periodic and change events

 Attribute configuration change
– Event pushed when:

• At event subscription
• The attribute configuration is modified with

set_attribute_config()

 User defined event / Data ready event
– Event pushed when the user decides it

04/28/10 132

Events (configuration)

 Periodic event configuration
– event_period (in mS).

• Default is 1000 mS
• Cannot be faster than the polling period

– Polling period != event period

– The event system does not change the attribute
polling period if already defined

Polling
400 mS

Event
(1000)

Client

04/28/10 133

Events (configuration)

 Change event configuration
– Checked at the polling period

– rel_change and abs_change
• Up to 2 values (positive, negative delta)

• If both are set, relative change is checked first
• If none is set -> no change event!

04/28/10 134

Events (configuration)

 Archive event configuration
– Checked at the polling period

– event_period (in mS).
• Default is 0 mS -> no periodic archive event!

– rel_change and abs_change
• Up to 2 values (positive, negative delta)

• If both are set, relative change is checked first

• If none is set -> no archive event on change!

04/28/10 135

Events (configuration)

 Event configuration parameters
(event_period, abs_change, rel_change…)
are part of the attribute configuration
properties

 Can be configured with Jive

04/28/10 136

Events (pushed from the code)

 Possible for change, archive, user and data
ready events

 To push events manually from the code a set
of data type dependent methods can be used:

DeviceImpl.push_xxx_event (attr_name,)

xxx = {change, archive, data_ready, ‘nothing’}

 It is possible to push events from the code
and from the polling thread at the same time

 Attribute configuration with Pogo

04/28/10 137

Events (pushed from the code)
 To allow a client to subscribe to events of non polled

attributes the server has to declare that events are
pushed from the code

DeviceImpl.set_change_event(attr_name, implemented, detect = true)

DeviceImpl.set_archive_event(attr_name,implemented, detect = true)

– implemented=true inidcates that events are pushed
manually from the code

– detect=true triggers the verification of the same event
properties as for events send by the polling thread.

– detect=false, no value checking is done on the pushed
value!

04/28/10 138

Events (filtering)

 When you subscribe to an event, you may
ask for a filters

 All filters are compared to the last event
value send and not to the actual attribute
value!

 Periodic event filter
• Filterable data name : “counter”
• Incremented each time the event is sent
• Ex : “$counter % 2 == 0”

04/28/10 139

Events (filtering)

 Change event filters are
– “quality” is true when the event was pushed on a

quality change
• “Ex: $quality == 1

– “forced_event” is true when the event was pushed
due to an exception, an exception change or when
the exception disappears

– “delta_change_rel” and “delta_change_abs”
contain the change detected by server compared
to the last event pushed

• Ex : “$delta_change_abs >= 2”

04/28/10 140

Events (filtering)

 Archive event filters are
– “counter” as for the periodic event
– “quality” and “forced_event” as for the change

event
– “delta_change_rel” and “delta_change_abs” as for

the change event

– “delta_event” contains the delta time in ms since
the last archive event was pushed

• Ex: “$delta_event >= 2000”

04/28/10 141

Events (heartbeat)

 To check that the device server is alive
• A specific “heartbeat event” is sent every 10

seconds to all clients connected on the event
channel

 To inform the server that no more clients are
interested in events
• A re-subscription command is sent by the client

every 200 seconds. The device server stops
sending events as soon as the last subscription
command is older than 600 seconds

04/28/10 142

Events (heartbeat)

 A dedicated client thread (KeepAliveThread)
wakes up every 10 seconds to check the
server’s 10 seconds heartbeat and to send
the subscription command periodically.

04/28/10 143

Events (threading)

 On the client side
– As soon as you create a DeviceProxy -> 2 threads (main

thread + omniORB scavenger thread)

– First event subscription adds 3 threads:
– (orb thread, omniORB thread and KeepAliveThread)

– Clients are servers : One more thread per Notification
service sending events to the client

– thread number: 5 + n (n = Notif service connected (+1 for
linux))

– Warning : Callbacks are not executed by the main thread !

 On the server side
– No changes

04/28/10 144

Events (client side)

 Event subscription with the
DeviceProxy.subscribe_event() method

 Event un-subscription with the
DeviceProxy.unsubscribe_event() method

 Call-back (idem to asynchronous call)
– Method push_event() to overwrite in your class

– This method receives a pointer to an instance of a
PyTango.EventData class

04/28/10 145

Events (client side)

import PyTango
import time

class MyCb:
def push_event(self,ev_data):

if ev_data.err is True:
print “Error received in event callback”

else:
if len(ev_data.attr_value.get_err_stack()) == 0:

print ev_data.attr_value.value

if __name__ == ‘__main__’
cb = MyCb()

dev = PyTango.DeviceProxy(‘et/s_lift/1’)
ev_id = dev.subscribe_event(‘Speed’,PyTango.EventType.CHANGE_EVENT,cb,[])

time.sleep(30)

dev.unsubscribe_event(ev_id)

class EventData:
 device (DeviceProxy)
 attr_name (string)
 event (string)
 attr_value (DeviceAttribute)
 err (bool)
 errors (sequence<DevError>)

04/28/10

Events (client side)

 The event subscription can be stateless (in
case the device server process does not run)

 You can also manage an event queue to
decuple the application from the events
 Defined at event subscription time

Queue size defined in the
DeviceProxy.subscribe_event() call

 The user calls DeviceProxy.get_events() to get the
events from the queue

04/28/10 147

Exercise 7

 Test set up
– Add a command which increments by 2 the

Current attribute (IncrCurrent – void –void)

 Start the notification service and register the
service to the Tango database
– notifd –n

– notifd2db

 Write a client which subscribes to a change
event and sleeps waiting for events

02/09/17 148

Tango Training: Part 7 : Device
Server Level 2…

 C++ specific features
 Attribute Alarms
 Several classes in the same

device server
 Threading model
 Abstract classes
 Device servers on Windows

02/09/17 149

C++ : Creating the Device

 A init_device() method to construct the device
– void SkiLift::init_device()

 A delete_device() to destroy the device
– void SkiLift::delete_device()

 All memory allocated in init_device() must be
deleted in delete_device()

02/09/17 150

C++ : Command Memory
Management

 For string dynamically allocated (Pogo style)
– Memory allocated in the command code and freed

by the Tango layer

Tango::DevString MyDev::dev_string(Tango::DevString argin)
{
 Tango::DevString argout;

 cout << “The received string is “ << argin << endl;

 string str(“Am I a good Tango dancer?”);
 argout = new char[str.size() + 1];
 strcpy(argout,str.c_str());

 return argout;
}

02/09/17 151

C++ : Command Memory
Management

 For string statically allocated
– ConstDevString is not a new type, just to allow

type overloading
– Pogo gives you the choice (for free !)

Tango::ConstDevString MyDev::dev_string(Tango::DevString argin)
{
 Tango::ConstDevString argout;

 cout << “The received string is “ << argin << endl;
 argout = “Hola todos”;

 return argout;
}

02/09/17 152

C++ : Command Memory
Management

 For array dynamically allocated (Pogo)
– Memory freed by Tango (how lucky are the users!)

Tango::DevVarLongArray *MyDev::dev_array()
{
 Tango::DevVarLongArray *argout = new Tango::DevVarLongArray();

 output_array_length = …..;
 argout->length(output_array_length);
 for (unsigned int i = 0;i < output_array_length;i++)
 (*argout)[i] = i;

 return argout;
}

02/09/17 153

C++ : Command Memory
Management

 For array statically allocated
– Tango provides a simple function to build Tango

array types from a pointer (create_xxxx)

Tango::DevVarLongArray *MyDev::dev_array()
{
 Tango::DevVarLongArray *argout;

 long argout_array_length = ….;
 argout = create_DevVarLongArray(buffer, argout_array_length);
 return argout;
}

02/09/17 154

C++ : Command Memory
Management

 For string array dynamically allocated
– Again memory will be freed by Tango layer

Tango::DevVarStringArray *MyDev::dev_str_array()
{
 Tango::DevVarStringArray *argout = new Tango::DevVarStringArray();

 argout->length(3);
 (*argout)[0] = CORBA::string_dup(“Rumba”);
 (*argout)[1] = CORBA::string_dup(“Waltz”);
 string str(“Jerck”);
 (*argout)[2] = Tango::string_dup(str.c_str());

 return argout;
}

02/09/17 155

C++ Attribute Memory
Management

 Designed to reduce data copy
– Uses a pointer to a memory area which by default is not freed

void MyDev::read_LongSpecAttr(Tango::Attribute &attr)
{
 long length = …..
 long *buffer = new long[length];

 attr.set_value(buffer,length,0,true);
}

void MyDev::read_LongSpecAttr(Tango::Attribute &attr)
{
 …..
 attr.set_value(buffer);
}

 But it is possible to ask Tango to free the allocated memory

02/09/17 156

C++ : Attribute Memory
Management

 What about a string spectrum attribute ?

void MyDev::read_StringSpecNoRelease(Tango::Attribute &attr)
{
 attr_str_array[0] = “Donde esta”;
 attr_str_array[1] = “la cerveza?”;

 attr.set_value(attr_str_array,2);
}

void MyDev::read_StringSpecRelease(Tango::Attribute &attr)
{
 Tango::DevString *str_array = new Tango::DevString [2];

 str_array[0] = Tango::string_dup(“La cerveza”);
 str_array[1] = Tango::string_dup(“esta en la nevera”);

 attr.set_value(str_array,2,0,true);
}

Class MyDev:…..
{
….
DevString attr_str_array[2];
};

02/09/17 157

OS signals in a Device Server

 It is UNSAFE to do what you want in a signal
handler

 Device servers provide a dedicated thread for
signal handling
– You can code what you want in a Tango device

signal handler

 Use the register_signal() and
unregister_signal() methods to
register/unregister signal handlers

02/09/17 158

OS signals in a Device Server

 Code your handler in the signal_handler()
method

 You can install a signal_handler on a device
basis if you filter the registering/un-registering
methods

 It is also possible to install a signal handler at
class level

02/09/17 159

Attribute Alarms

 Two types of alarms
– On value

– On read different than set

 Alarm on value
– Two thresholds called ALARM and WARNING

min_alarm min_warning max_warning max_alarm

ATTR_ALARM

ATTR_WARNING

ATTR_VALID

ATTR_WARNING

ATTR_ALARM

ALARM ON ALARM
Dev state

ATTR quality

ATTR value

02/09/17 160

Attribute Alarms

 Read value different from set value
– Two parameters to tune this alarm

• The authorized delta on value

• The delta time between the last attribute setting and the
attribute value check

– Obviously, only on Read-Write attributes and not
available for string and boolean

02/09/17 161

Attribute Alarms

 Six parameters to tune the alarm part of the
attribute configuration
– min_alarm, min_warning, max_warning,

max_alarm

– delta_t, delta_val

 Attribute alarms are cheked during the State
command (attribute) execution

02/09/17 162

Multi Classes Device Server

 Define which Tango classes are embedded in
your server
– C++ : in the class_factory file

– Python : in the script ‘main’ part

 To communicate between classes, use the
DeviceProxy instance

 All devices of all classes are “exported”
 Classes are created in the defined order and

destroyed in the reverse order

02/09/17 163

Multi Classes Device Server

 C++ example of a multi classes device server

#include <tango.h>
#include <SerialClass.h>
#include <ParagonClass.h>
#include <PLCmodbusClass.h>
#include <IRMirrorClass.h>

void Tango::DServer::class_factory()
{
 add_class(Serial_ns::SerialClass::init("Serial"));
 add_class(Paragon_ns::ParagonClass::init("Paragon"));
 add_class(PLCmodbus::PLCmodbusClass::init("PLCmodbus"));
 add_class(IRMirror_ns::IRMirrorClass::init("IRMirror"));
}

02/09/17 164

Multi Classes Device Server

 Python example of multi classes device
server

import PyTango
import CableCar
import SkiResort

if __name__ == ‘__main__’:
 py = PyTango.Util(sys.argv)
 py.add_TgClass(SkiLiftClass, Skilift, ’SkiLift’)
 py.add_TgClass(CableCar.CableCarClass, CableCar.CableCar, ’CableCar’)
 py.add_TgClass(SkiRessort.SkiResortClass, SkiRessort.SkiResort, ’SkiResort’)

02/09/17 165

Multi Classes Device Server

 C++ server build:
– The classes need to linked together

– For C++, Pogo generates a Makefile with the
options

• make lib : to add the class to the static class library
libtgclasses.a

• make shlib : to create a shared libray per class. For a
class called MyClass the shared library will have the
name MyClass.so

02/09/17 166

Multi Classes Device Server

 Python server build:
 It is possible to mix C++ and Python classes within

the same python device server
 The C++ class has to be compiled as shared

library
 The shared library has to be in the

LD_LIBRARY_PATH environment variable
 Use the add_Cpp_TgClass() method

02/09/17 167

Multi Classes Device Server

 C++ class in Python server:

import PyTango
import CableCar
import SkiResort

if __name__ == ‘__main__’:
 py = PyTango.Util(sys.argv)
 py.add_Cpp_TgClass(‘Modbus’,’Modbus’)

 py.add_TgClass(SkiLiftClass,Skilift,’SkiLift’)
 py.add_TgClass(CableCarClass,CableCar,’CableCar’)
 py.add_TgClass(SkiResortClass,SkiResort,’SkiResort’)

04/28/10 168

Exercise 8

 Join the classes MaxLabPowerSupply and
MultiMaxLabPowerSupply in one device
server process

02/09/17 169

The Threading Model

 omniORB is a multi-threaded ORB
– A Tango device server also…

 One thread is created in a device server for
each client

 A scavenger thread destroys thread(s)
associated to unused connections (omniORB
feature)

 Not always adapted to hardware access
 Tango also has its own polling and event

threads

02/09/17 170

The Threading Model

 Each Tango device has a monitor to serialize
the device access.

 Four modes of serialization
– By device (the default)
– By class (one monitor for a Tango class)

• Access to all devices of a class is serialized
• Use this model if your Tango device needs to access a

non threadsafe library

– By process (one monitor for the whole Tango
device server)

– No serialization (extreme care)

02/09/17 171

The Threading Model

 C++ :
 The Util::set_serial_mode() method is used to set the

serialization model in the main function

int main(int argc, char *argv[])
{
 try
 {
 Tango::Util *tg = Tango::Util::init(argc,argv);

 tg->set_serial_model(Tango::BY_CLASS);

 tg->server_init();
 …..

02/09/17 172

The Threading Model

 Python :
 The Util.set_serial_mode() method is used to set

the serialization model in the main part

If __name__ == ‘__main__’:
 try:

 py = PyTango.Util(sys.argv)
 py.add_TgClass(SkiliftClass,SkiLift,’SkiLift’)

U = PyTango.Util.instance()
U.set_serial_model(PyTango.SerialModel.BY_CLASS)

 U.server_init()
 ……

02/09/17 173

Abstract Classes

 Based on the C++ abstract classes (or Java
interfaces)

 A way to standardize interfaces
– What is the minimum number of

commands/attributes that my kind of device should
provide

– Write an abstract class which defines only this
minimum (no code) with Pogo

– Write the concrete class which inherits from the
abstract class

02/09/17 174

Abstract Classes

 This allows to have a minimum common
interface/behavior for the same type of device

 If possible, an application uses only the
minimum interface defined in the abstract
class and is independent of the real hardware

 Pogo also supports writing of the abstract
class itself.

02/09/17 175

Abstract Classes

02/09/17 176

Abstract Classes

 The next major version of Pogo will allow real
inheritance of Tango classes
– Base classes are not only interface classes

– Base classes can be easily extended

 C++ version in beta test
 Python not yet started

02/09/17 177

Abstract Classes

02/09/17 178

Device Server on Windows

 Two kinds of Tango device servers on
Windows
– Running as a Windows console application

• No changes

– Running as a Windows application
• Written using MFC
• Written using Win32 API

02/09/17 179

DS on Windows

02/09/17 180

Device server on Windows

 With the Win32 API
– Very similar to a traditional “main” but

• Replace main by WinMain
• Display message box for errors occurring during the

device server start-up phase

• Code the Windows message loop

– See example in doc chapter 8.5.3

 With MFC, see chapter 8.5.2
 Don’t forget to link your device server with the

Tango windows resource file

02/09/17 181

Device Server on Windows

 Take extreme care with the kind of libraries
used for linking (No mix)

 Tango supports
– Multithreaded (/MT)

– Debug Multithreaded (/MTd)

– Multithreaded DLL (/MD)

– Debug Multithreaded DLL (/MDd)

02/09/17 182

Device Server on Windows

 A Tango device server is able to run as a
Windows service but
– Needs changes in the code (See doc chapter

8.5.4)

– Needs to be registered in the Windows service
manager

• A new set of options is available when a device server is
used as a Windows service

– -i, -u or -s

02/09/17 183

Tango Training:
Part 8 : Advanced Features

 Tango without database
 Multi CS / Multi DB
 Tango adminstration
 Server Wizard

02/09/17 184

DS using a File as Database

 Tango device server supports using a file
instead of the database

 Generate the file with Jive
– Choose server -> right click -> save server data

 It is possible
– Get, update, delete class properties
– Get, update, delete device properties
– Get, update, delete class attribute properties
– Get, update, delete device attribute properties

02/09/17 185

DS using a File as Database

02/09/17 186

DS using a File as Database

 Start the device server on a specified port

 Device name used in a client must be
changed
– With database:

• sr/d-fuse/c04

– With file as database:
• tango://<host>:<port>/sr/d-fuse/c04#dbase=no

MyDs inst –file=<file_path> -ORBendPoint giop:tcp::<port>

02/09/17 187

DS using a File as Database

 Limitations
– Modifications are not reported back to the

database

– No check that the same device server is running
twice

– Manual management of host/port

– No alias

02/09/17 188

DS not using a Database at all!

 It is also possible to start a device server
without using a database at all
– Do not code database access within the device

server…

 The option is –nodb
 Another option –dlist allows the definition of

device names at the command line for the
highest tango class

02/09/17 189

DS not using a Database at all

 A method DeviceClass::device_name_factory is used
to define device names for a class, when it is not
possible to define them at command line

MyDs inst –nodb –dlist id13/pen/1,id13/motor/2
-ORBendPoint giop:tcp::<port>

02/09/17 190

DS not using a Database at all

 Change of device name
– tango://<host>:<port>/sr/d-fuse/c04#dbase=no

 Limitation
– The same as for a server with file database

– No properties at all

– No events

02/09/17 191

Multi TANGO_HOST

 A client running in control system A is able to
access devices running in control system B
by specifying the correct name

 Full Tango device name syntax

 Examples
– tango://freak:1234/id00/pen/c11#dbase=no

– tango:://orion:10000/sr/d-vlm/1

[protocol://][host:port]device_name[/attribute][->property][#dbase=xx]

02/09/17 192

Tango Control System with Several
Database Servers

 Defined using the TANGO_HOST environment
variable

 Client and servers will automatically switch from one
server to the other if one dies

TANGO_HOST=controls01:10000,controls01:15000

 DB 1
 on port
 10000

MySQL

 DB 2
on port
 15000

controls01

02/09/17 193

Tango CS Administration

 The goal:
– Overview of all hosts in a control system and all

running device servers

– Start/stop device servers in the control system
from a central point

– Diagnose rapidly problems or failures

 To administrate a Tango control system you
need:
– The Starter device server on every host

– Astor, the administration application

02/09/17 194

Tango CS Administration

 The Starter server is able to
– Start even before the database is running and wait for it

– Get the list of device servers configured for the host from the
database

– Start device server(s)
• Manage 5 (default) startup levels for ordered startup

– Kill a device server (command “kill” of the admin device)
– Check that a device server is running.

– Ping the device server process admin device to check if it is
alive

– Check if the notifd is running

02/09/17 195

Tango CS Administration

 Run one Starter device server per host in the
control system

 Start the Starter device server using the host
name as instance name

 The starter device name is (only one device)

Starter <host>

tango/admin/<host>

02/09/17 196

Tango CS Administration

 Astor is a graphical interface to the starter
device(s) and is able to
– Manage host(s) in a tree structure

– Display the state of hosts and device servers

– Start / Stop several servers on several host(s) with
some clicks

– See the device server output

– Open a window on a host

– Help you creating a new Starter entry for a new
host

02/09/17 197

Tango CS Administration

 Tools available within Astor:
– Jive

– Polling thread manager

– Polling thread configuration and profiling

– Event configuration and testing

– Device dependency tree

02/09/17 198

Tango CS Administration

02/09/17 199

Tango CS Administration

02/09/17 200

 Host (Starter) actions:
– Open a control panel (see servers)

– Remote login (not for win32)

– Starter test

– Clone (create a new Starter in database)

– Cut /Paste (to manage tree)

– Edit properties (Starter $PATH, comments…)

– Remove

Tango CS Administration

02/09/17 201

 Server actions:
– Start / kill server
– Restart (kill wait a bit and start)
– Set startup level
– Polling management
– Configuration (using the server wizard)
– Server and class info
– Test a device
– Check states
– See standard error

Tango CS Administration

02/09/17 202

The Device Wizard

 Available from Jive or Astor
 Allows a user to create and configure a new device

server dynamically in the database without
knowledge on
– Available classes in the server
– Usable device properties when creating new devices

 The wizard will
– Automatically retrieve class properties and will ask for new

values
– Automatically retrieve device properties and will ask for new

values

02/09/17 203

The Device Wizard

02/09/17 204

Polling Management

 Available from Astor
 Thread pool management
 Polling configuration
 Polling profiling

02/09/17 205

Polling Management

02/09/17 206

Event Manager

 Available from Astor
 Configure periodic, change and archive

events
 Subscribe and test a set of events

02/09/17 207

Event Manager

02/09/17 208

Device Dependency Tree

 Available from Astor
 Shows all open connections to sub devices

for every device in a device server
 Connections which cannot be directly

attributed to a device are listed under the
administration device name

02/09/17 209

Device Dependency Tree

02/09/17 210

Access Control
 Allows to restrict user access on devices:

– Reading is always possible

– Writing must be allowed

 A default access need to be defined
 For a user can be defined:

– A list of allowed host or network addresses

– A list of READ_WRITE or READ_ONLY devices

Access Control
 To enable access control:

– Create the free property CtrlSystem (if not yet
available)

– Start the TangoAccessControl service as

 TangoAccessControl 1

– Execute the command RegisterService on the
device sys/access_control/1

– Start Astor and open the Access Control panel
from the tools menu

02/09/17 211

All user are in read only mode.
(default mode)

User id01 can access only devices of the domain FE
from it's network.

Operator can access all Tango devices
from control room networks.

User verdier (administrator) can access all Tango devices
from all ESRF network.

How to configure TANGO access control:

Access Control

04/28/10 213

Exercise 9

 Add the device server with a start-up level in
Astor

 Create a polling thread for every
MaxLabPowerSupply device and configure
the polling of the Current attributes

 Configure change events for the Current
attributes and test the events

02/09/17 214

Tango Training: Part 9:
Graphical User Interfaces

 GUI Toolkits
 ATK
 Synoptic Views
 Panel Builder

GUI Toolkits

 Java :
– ATK based on Java Swing

– Widgets a Java Beans

 C++ :
– Qtango based on Qt

– Can be used in QtDesigner

 Python
– Tau based on PythonQt

– Can be used in QtDesigner

02/09/17 215

GUI Toolkits

 All toolkits follow the MVC model
 All toolkits are based on a core and a widget

libray
 All toolkits implement a device and an

attribute factory (DeviceProxy only once)
 All toolkits abstract data reception

– Use events when available

– Otherwise polling

02/09/17 216

02/09/17 217

GUI Toolkits
• Provides a framework to speed up the
development of Tango Applications

• Helps to standardize the look and feel of
the applications

• Implements the core of “any” Tango Java
client

• Is extensible

02/09/17 218

ATK Software Architecture

Java Swing Tango Java API

Tango ATK

Application

02/09/17 219

ATK Software Architecture

Model View

Application

Control

ATKCore ATKWidget
Attribute

AttributeList

Command

CommandList

… etc.

NumberSpectrumViewer

NumberScalarListViewer

CommandComboViewer

StateViewer

… etc.

Myviewer.setModel(coreObject)

Tango Java API Java Swing

02/09/17 220

Inside ATK
ATKCoreATKCore sub-package provides the classes which implement the model

Model

ATKCoreATKCore Tango Java APITango Java API

Attribute Tango Device Attribute
Connects to

Subscribes to Tango Events

Attribute Change Event

ATK Attribute Viewer

ATK Attribute Viewer

ATK Error Viewer

Notify all it’s
attribute listeners

Error occurs

ATKWidgetATKWidget

View

Notify all it’s error
listeners

02/09/17 221

Inside ATK
ATKWidgetATKWidget sub-package provides the classes to view and to interact
with ATKCore objects

NumberSpectrumViewer NumberImageViewer

ScalarListViewerCommandComboViewer

ATKWidgetATKWidget

Java SwingJava Swing

View

02/09/17 222

Synoptic

Jdraw editor to draw the synoptic with vector graphics

Associate parts of the drawing to Tango
components (attributes, commands)
Give the “panel” class name to be popped
up when this object is clicked

Synoptic

02/09/17 223

Graphical component libraries can be created

02/09/17 224

Synoptic
Launch the ready to use ATK application “SimpleSynopticAppli” to test
the synoptic at run time

02/09/17 225

Synoptic
Design your own specific ATK application using your favorite Java IDE

02/09/17 226

Synoptic
Final synoptic application

Panel Builder JDDD

 JDDD = Java Doocs Data Display

http://jddd.desy.de
 Developed at DESY (MCS group)
 Interactive panel builder
 Stores panels in XML format
 Can use ATK widgets as plugin
 A JDDD version with the configured ATK plugin

can be downloaded from:
– http://www.tango-controls.org/download

02/09/17 227

http://jddd.desy.de/

Panel Builder JDDD

 Interesting concepts
– Hierarchical panel usage
– Can handle several application layers
– Address inheritance through the components is

possible
• Configure a device name only once for the whole panel

– Allows the use of a SVN repository to store and
retrieve panel files

– Easy to use logic and animation features
– Wild card addressing for ATK widgets

02/09/17 228

Panel Builder JDDD

02/09/17 229

02/09/17 230

Examples
More information : http://www.tango-controls.org

http://www.tango-controls.org/tutorials

04/28/10 231

Exercise 10

 Create a panel or synoptic to drive three
MaxLabPowerSupply devices
 Commands On, Off
 Current reading and writing
 State and status

02/09/17 232

Tango Training:
Part 10 :

Archiving System

 HDB
 TDB
 Snapshots

02/09/17 233

Archiving System

 A set of three databases to keep history of
what’s going on in the control system
– HDB (History Database)

– TDB (Temporary Database)

– Snap (Snapshot database)

 Two supported underlying database systems
– Oracle (Soleil)

– MySQL (Alba, Elettra, ESRF)

02/09/17 234

Archiving System

 Implemented using
– A set of Java device servers to

• Get data from the control system
• Send extracted data to the requesting client

– JDBC to access the database itself

 Running 7 days a week, 24 hours a day

02/09/17 235

HDB / TDB

 Storage of data coming from attributes only
– Command result storage is not supported

 HDB is dedicated to long term storage
– Data are never deleted

– Smallest storage period = 10 sec (0.1 Hz)

 TDB is dedicated to temporary storage
– 3 days max (configurable)

– Smallest storage period = 0.1 sec (10 Hz)

02/09/17 236

HDB / TDB

 Several storage modes:
– Periodic: Data stored at a fixed period (mandatory)

– Different:
• Data stored when reading is different from the last stored

value
• Data stored when the difference between read value and

last stored value is greater/lower than an absolute limit

• Data stored when the difference between read value and
last stored value greater/lower than a limit in %

– Threshold: Data stored greater/lower than a pre-
defined threshold

02/09/17 237

HDB / TDB

 Device servers common for HDB / TDB
– ArchivingManager

• Provide global command(s)

• Load balancing

02/09/17 238

HDB

 Device servers for HDB
– HdbArchiver(s)

• Collect data from the control system and store them in the
database

– Uses polling of devices

– Can be configured to receive archiving events

» Not yet documented

» Only handled by Mambo for data extraction

– HdbExtractor(s)
• Extract data from the database and send them to caller

– HdbArchivingWatcher
• Diagnosis tool : detecting abnormal archiving interruption
• Recovery : reactivate archiving on failed attributes

02/09/17 239

TDB

 Device servers for TDB
– TdbArchiver(s)

• Collect data from the control system and store them in
the database

– Uses only polling

– TdbExtractor(s)
• Extract data from the database and send them to caller

– TdbArchivingWatcher
• Diagnosis tool : detecting abnormal archiving interruption
• Recovery : reactivate archiving on failed attribute

02/09/17 240

HDB / TDB

 Mambo
– Configure HDB and TDB

– Display of data stored in HDB / TDB

– Handle user configurations

 Mambo as web-start application
– Uses the Tango web protocol

 E-Giga
– Display of data coming from HDB in your WEB

browser

02/09/17 241

HDB / TDB
MAMBO : Configuration and Extraction application

04/28/10 242

Exercise 11

 Store the currents of the
MaxLabPowerSupply devices
 in HDB

 Every 60 seconds
 On value change, check every 10 seconds

 In TDB
 Every second

 Read stored data with Mambo
 Read stored data with AtkMoni from the HDB

extractor server

SNAP
 Capability to take a picture of a set of

attributes at a time
– Motors positions before a planned electric halt

 Compare quickly and easily the attributes
values
– Before and after an experience to analyse the

beamline parameters evolution

 Send instructions easily to several equipments
– Set the beamline in a configuration reference

02/09/17

02/09/17 244

SNAP

 Device servers for Snap
– SnapManager

• Manage snapshot configuration
• Send command(s) to SnapArchiver

– SnapArchiver
• To take the snapshot and send the data to the database

– SnapExtractor
• To extract snapshot data from database

SNAP

02/09/17 245

BENSIKIN : Configuration and Exploitation

04/28/10 246

Exercise 12

 Configure a snapshot to store the actual
Current values of the MaxLabPowerSupply
devices

 Change the power supply Current set points
 Apply the stored snapshot to the power

supplies

02/09/17 247

Tango Training:
Part 11 :

Miscellaneous

 Getting software
 Who is doing what

02/09/17 248

Getting the Tango Core

 You can download Tango from the ESRF Tango WEB
page (http://www.tango-controls.org/download)
– As a source package for UNIX like OS

– As a Windows binary distribution

 For Unix (and co), do not forget to first download,
compile and install
– omniORB

– omniNotify

 For Windows all libraries and binaries for omniORB
and omniNotify are included in the distribution.

02/09/17 249

Getting the Tango Core

 In both distributions, you have
– Tango core (libraries and jar files)

– Database device server and a script to create the
Tango database for MySQL

– Pogo, Jive, LogViewer, jdraw

– Astor and Starter device server

– A test device server (TangoTest)

– ATK

02/09/17 250

Getting the Tango Core

 For the UNIX like OS source distribution, you
have to compile everything with the famous
three commands
– configure

– make

– make install

02/09/17 251

Tango Core Sources

 All Tango core sources are stored in a CVS
server hosted by SourceForge called Tango-
cs (http://sourceforge.net/projects/tango-cs/)

 On this project, you find sources for
– C++ libraries and Java API
– Database, Starter and TangoTest device servers
– Pogo, Astor, Jive, LogViewer and ATK
– Binding for Python, Matlab and Igor
– The Tango archiving system

02/09/17 252

Getting Tango Classes

 Nearly all Tango classes (> 200) are available
for download on the WEB from Tango related
WEB sites

 Two kind of classes
– Common interest classes and interfaces to

commercial hardware

– Specific classes to interface institute specific
hardware

02/09/17 253

Getting Tango Classes

 On the WEB for each class, you find the
HTML pages generated by Pogo

 Common interest classes sources are stored
in a CVS server hosted by SourceForge
– Project name = tango-ds

– http://sourceforge.net/projects/tango-ds/

 Local classes sources are stored in a local
CVS repository at each institute

http://sourceforge.net/projects/tango-ds/

02/09/17 254

Getting Tango Classes

02/09/17 255

Tango Core Development

 ELETTRA:
– Alarm system

– Canone: A WEB interface using PHP

– E-Giga: A WEB interface above the Tango
archiving system

– QTango: ATK like GUI toolkit in C++
• Using QT

02/09/17 256

Tango Core Development

 SOLEIL:
– Archiving system

• Using ORACLE or MySQL

– Snapshot system
• Using ORACLE or MySQL

– Matlab and Labview bindings

– WEB protocol for ATK

02/09/17 257

Tango Core Development

 ALBA:
- Python binding (PyTango release 4.x)

- Sardana: Control software for experiments

- Tau: ATK like GUI toolkit in Python
- Using QT

02/09/17 258

Tango Core Development

 ESRF:
– Tango libraries (C++ and Java)

– Pogo

– Jive

– Astor / Starter

– ATK

	Tango Training
	Slide 2
	Slide 3
	What is Tango?
	Slide 5
	Slide 6
	The Tango Collaboration
	Slide 8
	Language/OS/compilers
	Language/OS/Compilers
	CORBA
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	The Tango Device
	Slide 18
	Slide 19
	The Tango Class
	The Tango Device Server
	Slide 22
	Slide 23
	Slide 24
	A minimum Tango System
	Slide 26
	Tango Training: Part 3 : Writing a device server
	Tango Device
	Command/Attribute
	Tango Device Command
	Tango Device Attribute
	Slide 32
	Device Attribute Configuration
	Slide 34
	Slide 35
	Slide 36
	Tango Device State
	Writing a Tango Device Class
	A Tango Device Class (example)
	Exercise 1
	Slide 41
	Slide 42
	Coding a Tango Device Class
	Coding a Tango Class
	Slide 45
	Creating the Device (constructor)
	Slide 47
	Creating the Device
	Implementing a Command
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Back to the init_device method
	Reading Attribute(s)
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Writing Attribute(s)
	Slide 65
	Slide 66
	Slide 67
	Implementing attribute
	Slide 69
	Slide 70
	Memorised Attributes
	Exercise 3 (Arg !!…)
	Reporting Errors
	Slide 74
	Properties
	Slide 76
	Slide 77
	Slide 78
	Attribute Properties
	Exercise 4
	Some code executed only once ?
	A Tango Device Server Process
	Automatically added Commands/Attributes
	The remaining Network Calls
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Tango on the Client Side
	PyTango Client
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Errors on the Client Side
	Slide 97
	Slide 98
	Exercise 5
	Slide 100
	Asynchronous Call
	Asynchronous call
	Group Call
	Slide 104
	Slide 105
	Slide 106
	The Administration Device
	The administration device
	The Tango Logging System
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	The Polling
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Exercise 6
	Slide 125
	Events
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Events (configuration)
	Slide 133
	Slide 134
	Slide 135
	Events (pushed from the code)
	Slide 137
	Slide 138
	Events (filtering)
	Slide 140
	Slide 141
	Events (heartbeat)
	Events (threading)
	Events (client side)
	Slide 145
	Slide 146
	Exercise 7
	Slide 148
	C++ : Creating the Device
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	C++ Attribute Memory Management
	C++ : Attribute Memory Management
	OS signals in a Device Server
	Slide 158
	Attribute Alarms
	Slide 160
	Slide 161
	Multi Classes Device Server
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Exercise 8
	The Threading Model
	Slide 170
	Slide 171
	Slide 172
	Abstract Classes
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	DS on Windows
	Device server on Windows
	Device Server on Windows
	Slide 182
	Slide 183
	DS using a File as Database
	Slide 185
	Slide 186
	Slide 187
	DS not using a Database at all!
	DS not using a Database at all
	Slide 190
	Multi TANGO_HOST
	Tango Control System with Several Database Servers
	Tango CS Administration
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	The Device Wizard
	Slide 203
	Polling Management
	Slide 205
	Event Manager
	Slide 207
	Device Dependency Tree
	Slide 209
	Access Control
	Slide 211
	Slide 212
	Exercise 9
	Tango Training: Part 9: Graphical User Interfaces
	GUI Toolkits
	Slide 216
	Slide 217
	ATK Software Architecture
	ATK Software Architecture
	Inside ATK
	Slide 221
	Synoptic
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Panel Builder JDDD
	Slide 228
	Slide 229
	Examples
	Exercise 10
	Slide 232
	Archiving System
	Slide 234
	HDB / TDB
	Slide 236
	Slide 237
	HDB
	TDB
	Slide 240
	Slide 241
	Exercise 11
	SNAP
	Slide 244
	Slide 245
	Exercise 12
	Slide 247
	Getting the Tango Core
	Slide 249
	Slide 250
	Tango Core Sources
	Getting Tango Classes
	Slide 253
	Slide 254
	Tango Core Development
	Slide 256
	Slide 257
	Slide 258

